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Univariate Descriptive Statistics

We shall only be considering the continuous probability 
distributions for this lecture.  The three descriptive 

statistics for cts. distributions are defined as 

The cts. Mean, which is also the first moment of the 
distribution, it is also the minimum variance estimator and 

is given by
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The next statistic is the median.  This is the unbiased 
estimator.  For cts. distributions this is given by
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The third and final descriptive statistic is the mode.  This 
is the maximum likelihood estimator and is defined by
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Univariate normal (Gaussian) distribution
The univariate normal distribution is regularly used to 

approximate other distributions through the central limit 
theorem, we do not discuss that here, but is has two 

definitions.  The Standard Normal is defined by

Whilst the biased version is given by
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Multivariate Distribution Theory

Question: How do the three statistic operators transfer to 
multivariate theory?   NOT VERY WELL!!!
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Therefore the expectation of a random vector is the 
vector of random expectations



MULTIVARIATE MEDIANS

This is the worst of the three statistics.  Although it is 
unbiased it is also non-unique, even for the multivariate 

normal distribution.  The multivariate definition is 

( )
( )

( )
( )

( )( )( )

∫ ∫ ∫=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
1 2

2
1

x

a

x

c

Nx

e
med df

Nx

x
x

xxx L
M



BIVARIATE UNIT NORMAL, ρ=0
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Is all hope lost? No

Our saviour is the mode!!!!

There is a simple multivariate extension of the definition 
of the mode from the univariate case to the multivariate.
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The Multivariate Normal Distribution is given by

( )
( )

( ) ( )

N

T
Nf

ℜ∈

⎭
⎬
⎫

⎩
⎨
⎧ −−−= −

x

μxΣμx
Σ

x 1

2
1

2
2
1exp

2

1

π



BAYES THEOREM AND GAUSSIAN DATA ASSIMILATION

The basis of 3D VAR comes from Lorenc (1986) where he 
uses Bayes theorem

with the event A presenting the effect background 
knowledge and the event B the effects of the 

observations given the uncertainties with the background 
states.  The right hand side of the equation above 

becomes the ANALYSIS DISTRIBUTION whose mean, 
mode or median we seek as the ANALYSIS STATE OR 

TRUE SOLUTION.  For 3D VAR this is written as
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Where we have assumed that the background and 
observational errors are independent. Therefore 

multiplying the two distributions above and taking 
the negative logarithm we obtain the standard 3D 

VAR cost function
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LOGNORMAL DISTRIBUTION: UNIVARIATE AND 
MULTIVARIATE THEORY

The lognormal distribution is for a class of positive 
definite random variables, i.e.

The pdf is given by
0≥x
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PROPERTIES OF THE LOGNORMAL DISTIRBUTION
UNIVARIATE

PROPERTY 1: IF X ~ LN(μ,σ2)THEN ln X IS DISTRIBUTED 
N(μ,σ2) 

PROPERTY 2: THE MODE OF X IS

PROPERTY 3: THE MEDIAN OF X IS 

PROPERTY 4: THE MEAN OF X IS

PROPERTY 5: THE LOGNORMAL DISTRIBUTION CAN 
NOT BE UNIQUELY DETERMINED BY ITS MOMENTS!!!
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MULTIVARIATE LOGNORMAL DISTRIBUTION
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PROPERTIES OF THE LOGNORMAL DISTRIBUTION

MULTIVARIATE

PROPERTY 1: MEDIAN IS NON-UNIQUE

PROPERTY 2: MOMENTS DO NOT DETERMINE THE DISTRIBUTION 
UNIQUELY

PROPERTY 3: MEAN IS INDEPENDENT OF COVARIANCE AND IS 
UNDOUNDED WITH RESPECT TO THE VARIANCE

PROPERTY 4: MODE IS BOUNDED AND FINITE WITH RESPECT TO 
THE VARIANCE.

PROPERTY 5: MODE IS UNIQUE!!!



LOGNORMAL DATA ASSIMILATION
FLETCHER AND ZUPANSKI (2006a)

BY FOLLOWING LORENC (1986) AND COHN (1997) WE CAN DEFINE 
A COST FUNCTION FOR LOGNORMAL OBSERVATION ERRORS. 

WHERE THE ERRORS ARE DEFINED BY 
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MOTIVATION
UNDERLYING ASSUMPTION IN VARIATIONAL, KALMAN 
FILTER AND ENSEMBLE DATA ASSIMILATION IS THAT 
THE VARIABLES, OBSERVATIONS AND HENCE ERRORS 

ARE NORMAL (GAUSSIAN) DISTRIBUTED, LORENC (1986), 
KALMAN (1960), EVENSEN (1994).

QUESTION 1: IS THIS TRUE FOR ALL SCALES IN 
THE ATMOSPHERE?

QUESTION 2: IS THIS TRUE FOR ALL TYPES OF 
OBSERVATIONS?



Question 1
Synoptic scale: Are all the synoptic variables Gaussian?  NO

Humidity: To assimilate this variable we have to use the  
logarithm of the variable (Polavarapu et al 2005). This indicates 
that this variable is LOGNORMAL!!

Wind component: Combined with the moisture flux then this 
variable is showing sign that the wind components may be 
LOGNORMAL!! (Raymond 1997)

Comment: These variables are both positive definite!!



Question 1
Meso-scale: Are all meso-scale variables Gaussian? NO

In the paper by Miles et al. (2000) there is a large summary of 
cloud variables which are not Gaussian, specifically 
LOGNORMAL and GAMMA.  As early as the 1970s rain and 
cloud variables had been identified as LOGNORMAL, Mielke et 
al. (1977)



Question 2

Are all observations Gaussian? NO

Direct Observations: The variables which we have already 
mentioned are not Gaussian and therefore a direct observation of
them is also not.

Retrievals: By having to take the logarithm of the humidity to 
apply 1D Variational data assimilation (1D VAR) then the 
observation is not Gaussian. It is LOGNORMAL!!

Radiances: By having to bias correct the solution for the VAR 
scheme to work implies Gaussian assumption has been violated, 
(Derber and Wu, (1998), Harris and Kelly (2001)).



Question 2

Optical Depth: In Stephens et al. 2002 the pdf of this variable is 
presented, clearly showing a LOGNORMAL structure.

Infra-Red Flux Differences: From the same paper. 

Cloud base height: In Sengupta et al. 2004 these observations 
shows signs of a lognormal structure.

Liquid water path: Same paper, shows a sharp positive skewness 
associated with a LOGNORMAL distribution with large 
variance.

Brightness Temperature: Work currently being done with the 
GOES-R sounder (Grosso and Sengupta) shows, when scaled to 
the main region of observation, then this is LOGNORMAL. 



CURRENT TECHNIQUES

CURRENTLY THERE ARE TWO MECHANISM WHICH 
ARE USED TO OVERCOME THIS PROBLEM.

TECHNIQUE 1: TRANSFOMATION. IF X ~ LN(μ,σ2) THEN
ln X ~ N(μ,σ2). NOTE: THE MEAN AND VARIANCE ARE 
UNCHANGED.

TECHNIQUE 2: FORCE THE GAUSSIAN ASSUMPTION 
AND BIAS CORRECT.

A THIRD TECHNIQUE WHICH IS EMPLOYED IN OTHER 
FIELDS IS TO USE A GAUSSIAN SUM FILTER.  

A FOURTH APPROACH IS TO USE A MAXIMUM 
ENTROPHY CONDITION.



PROBLEMS ASSOCIATED WITH CURRENT 
TECHNIQUES

TRANSFORMATION:

IMPACT 1: THE STATISTIC WHICH IS FOUND IS THE 
MEDIAN NOT THE MODE NOR THE MEAN.

IMPACT 2: WHEN TRANSFORMING ALL HIGHER 
ORDER MOMENT IMFORMATION IS LOST.

IMPACT 3: THE ANALYSIS STATE FOUND WILL OVER 
ESTIMATE THE TRUE ‘MOST LIKELY STATE’
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PROBLEMS ASSOCIATED WITH CURRENT 
TECHNIQUES

FORCED GAUSSIAN:

IMPACT 1: WRONG PROBABILITIES ASSIGNED TO THE 
OUTLIERS.

IMPACT 2: PROBABILITIES ASSIGNED TO UNPHYSICAL 
VALUES.

IMPACT 3: WRONG STATISTICS USED TO 
APPROXIMATE THE VARIABLE’S DISTRIBUTION.



BIVARIATE UNIT NORMAL, ρ=0
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EXAMPLE WITH THE LORENZ’63 MODEL

THE MODEL CONSIST OF THE COUPLED SYSTEM OF THREE NON-
LINEAR PDES
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LOGNORMAL DATA ASSIMILATION

We start by consider which statistic to use to best represent the 
underlying analysis pdf.

The three descriptive statistics are the mode ‘most likely state’,
median ‘unbiased state’ and the mean ‘minimum variance’.

Unlike with the Gaussian distribution and other symmetric 
distributions these three statistics are not identical so which one to 
use?



HYBRID DISTRIBUTION 
FLETCHER AND ZUPANSKI (2006b)

CAN DEFINE A HYBRID NORMAL-LOGNORMAL 
MULTIVARIATE PROBABILITY DENSITY FUNCTION OF 
THE FORM

WHERE
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HYBRID ASSIMILATION
FLETCHER AND ZUPANSKI 2006b

FROM THE DISTRIBUTION DEFINED IN (3) IT IS POSSIBLE 
TO DEFINE A COST FUNCTION FOLLOWING THE 
DERIVATION IN LORENC (1986). THIS IS DEFINED WITH A 
HYBRID BACKGROUND AS

WHERE 
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APPLICATION TO SATELLITE DATA 
ASSIMILATION

The cost functions which we have presented enable us to avoid 
the bias correction which is applied in both direct radiance data 
assimilation and in retrievals. 

Given this lognormal framework we can quantify the bias 
corrections which are currently applied.



TRANSFORMATION (RETRIEVALS)

By transforming to the logarithm of the state variable and the 
observations which are a mixture then the associated cost 
function is the standard Gaussian cost function,
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SOLUTIONS

The non-linear solutions to the two cost functions on the previous 
slide are derived in Fletcher and Zupanski (2007) and Lorenc 
(1986) but are stated here as
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WRONG DISTRIBUTION
By assuming the wrong distribution we have to see how much of 
an effect this has.  If we assume a Normal background and a set 
of lognormal observations then if we apply a Taylor series 
expansion of εo then we obtain the following cost function 
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4D LOGNORMAL DATA ASSIMILATION

Unlike with the three dimensional version of 
variational data assimilation there is not probability 
model set out for 4D VAR.  Until Fletcher 2007, where 
we are able to define 4D VAR as a Bayesian Network.

The Gaussian 4D VAR is defined through a 
calculus of variation problem with initial conditions 
found through the adjoint.  We can do this as well for 
the lognormal through the inner product
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As with the Gaussian case we know that the first variation 
of the functional defined on the previous is equivalent to
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Through using the properties of inner products we get 
that the gradient is
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What is wrong with the set up on the previous slide?

The solution is a median and not the mode and hence 
is independent of the variance.

We need to define the functional as
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We are only able to define these different functionals 
because of our previous work with the 3D VAR lognormal 
data assimilation method and the properties of the three 
distribution estimators.  However, if we wanted to extend 
this to variables that are not normal or lognormally 
distributed we need a probability model.

In Fletcher 2007 we present a model through using 
Bayesian networks theory.  The main point about this 
approach is that it allows us to simplify the expression for  
Bayes Theorem extended to multiple events which is given 
by
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Bayesian networks allow us to remove terms that are 
not conditioned on other random variables.  From the 
diagram on the board for the perfect model we have 
that all the model states are only dependent on the 

initial conditions.  We also have that the observations 
are only dependent on the model state at the time 

which allows further simplification to give us
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MINIMISATION AND 
PRECONDITIONING



Outline of lecture

1) One dimension Newton-Rhapson

2) Unconstrained optimisation

3) Newton’s method for non-linear minimisation

4) Wolfe Condition

5) Quasi-Newton methods

6) Conjugate Gradients

7) Preconditioning

8) Control Variable Transforms



Newton’s method for one-dimensional problems

We wish to solve the problem f(x)=0 but we can not 
analytically find the solutions so we approximate the 

gradient with a tangent line to the function given a good 
guess to the true solution.  We obtain the iterative 

formula from a Taylor series expansion of the function in 
the vicinity of the true root.
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Newton’s method in multiple dimensions

Like with one dimension case the multi-dimensional 
version of Newton’s method come from a Taylor series 

which then gives  
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UNCONSTRAINED OPTIMISATION

In this class of problems we are seeking the 
minimum/maximum of a continuous function of several 

variables.  To constrain the solution we have that a 
point α is called a STRICT LOCAL MINIMUM of the 

function f if

Generally an initial guess of α will be well known and 
we also assume that the function is twice differentiable 

with respect to the variables.  
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We now reformulate Newton’s method for the function to 
use the famous calculus result that at the minima then the 

gradient of the function is zero, i.e.

Thus we are having to solve the non-linear system of 
equations given by

Which in vector notation this problem looks like
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To formulate the minimisation scheme we consider a 
Taylor series expansion of the gradient of the function. 

Where 

Is the Hessian matrix.  The problem for the weather 
prediction community is that the size of this matrix is 

107 by 107 and therefore we can not analytically find G.  
Therefore we need other methods.  These are called the 

descent methods.
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Wolfe Conditions
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Quasi-Newton Methods
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

The limited memory version of this algorithm is used in 
many data assimilation methods.  This approach is used 
in NCEP’s Meso-scale 4D VAR system, (ETA VAR), it is 

also used in the Cooperative Institute for Research in the 
Atmosphere (CIRA)/Colorado State University’s 4D VAR 

system, RAMDAS – Regional Atmospheric Modeling Data 
Assimilation System, Zupanski et al. (2005).  This is also 

used in the United Kingdom’s Met Office 4D VAR 
operational weather prediction systems from synoptic to 

cloud resolving data assimilation systems.
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Non-linear Conjugate Gradients methods

These approaches are used instead of Quasi-Newton 
methods as they avoid the Hessian approximations but are 

not as fast to converge as the Newton methods.  These 
approaches are seeking solutions to the problem

Where the minimum occurs when the gradient is zero i.e.

The non-linear CG methods seek a solution to the gradient 
problem same as the Newton methods.

So given a cts function to minimise the gradient indicates 
the direction of a maximum increment.  Therefore we start 

in the opposite (steepest descent) direction. 
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Minimization in ensemble DA

Equivalent to  solving a quadratic minimization problem (Lorenc 1986):
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Ensemble DA is a minimization process. Due to perfect 
Hessian preconditioning, the minimum solution is obtained in a 
single minimization iteration (for near-quadratic problem).



Minimization in variational DA
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Variational DA is a minimization algorithm
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P - preconditioning matrix

• Gradient based minimization (CG, quasi-Newton, truncated Newton)
Adjoint
Multiple tangent linear models
Finite differences

• Difficult preconditioning due to large dimensions of the problem

• Preconditioning impacts not only the minimization convergence (cost), 
but also the accuracy of the solution (quality) 
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Hessian preconditioning 
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Hessian and inverse Hessian (linear contribution)
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Ideal Hessian Preconditioning 

J=const.

ζ0

ζmin

x0

xmin

J=const.

Physical space (x)

Preconditioning space (ζ)

-gζ

-gx
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IMPACT OF MATRIX A 
IN HESSIAN PRECONDITIONING 
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Impact of preconditioning  in 
NCEP’s Eta 4DVAR system

Incorrect solution without preconditioning !
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PRECONDITIONING IN 4DVAR 
(NCEP ETA, CSU RAMS)

Controls the magnitude of control variable adjustment
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Synoptic situation dependent (D=diagonal empirical matrix)



4DVAR RESULTS WITH RAMS MODEL
• 6-HOUR ASSIMILATION PERIOD: 03/08/2002  12 Z – 18 Z
• WRF observations at 15Z and 18Z
• Control Variables:  INITIAL CONDITIONS + MODEL ERROR
• - perturbation Exner function
• - potential temperature
• - horizontal winds
• - total mixing ratio
• 4DVAR analysis: END of the assimilation interval
• CSU RAMS non-hydrostatic NWP model, Level 2 Microphysics 
• Adjoint with explicit microphysics
• 15 km horizontal resolution, 31 vertical level
• 120 X 80 grid points (1800 km X 1200 km)
• Calculations performed on Linux PC Cluster (8 CPU)
• 10 MINIMIZATION ITERATIONS
• ONE minimization iteration cost  ~ 10 RAMS   model integrations (6-h 

forecast)

Milija Zupanski,  CIRA/CSU
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MINIMIZATION ITERATIONS

Milija Zupanski,  CIRA/CSU
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Smooth Convergence

COST FUNCTION

6.0000E+04

8.0000E+04

1.0000E+05

1.2000E+05

1.4000E+05

1.6000E+05

1.8000E+05

1 2 3 4 5 6 7 8 9 10

Number of Iterations

C
O

ST
 F

U
N

C
TI

O
N

Series1

GRADIENT NORM

5.0000E+03

1.5000E+04

2.5000E+04

3.5000E+04

4.5000E+04

5.5000E+04

1 2 3 4 5 6 7 8 9 10

Number of Iterations

G
R

A
D

IE
N

T 
N

O
R

M

Series1



Milija Zupanski,  CIRA/CSU
ZupanskiM@CIRA.colostate.edu

Cost Function

COST FUNCTION
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x – control variable  ~ O(108)

n – time index (n=1, . . ., N)
K – (non-linear) observation operator 
M – (non-linear) NWP model
y – observation vector
R – observation error covariance 
xB – first-guess (background) model state
Pf – forecast error covariance
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HESSIAN
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PRECONDITIONING ISSUES IN APPLICATIONS 
TO REALISTIC ATMOSPHERIC AND OCEANIC 

DATA ASSIMILATION

(1) Large dimensions of the Hessian

(2) Unavailable matrix representation of the Hessian

(3) Inversion of 108 X 108 matrix not computationally feasible

(4) Computationally expensive calculation of the cost-function and gradient

(5) Preconditioning is necessary: Hessian Condition Number ~ O(1015)
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PRECONDITIONING SOLUTIONS IN 
APPLICATIONS TO REALISTIC ATMOSPHERIC 

AND OCEANIC DATA ASSIMILATION
(1) (Square-root) forecast error covariance matrix: 2/1

f
-T PE ≅

IA =

22/1 )(
T

f
-T −

+≅ DIPE

DA =

(2) Empirical preconditioning:

Hessian Condition Number ~ O(101)

- assumption:

Hessian Condition Number ~ O(102)- O(103)

- assumption:

D – empirical diagonal matrix
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EMPIRICAL PRECONDITIONING
(Zupanski - Tellus 1993, MWR 1996)
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USE TAYLOR EXPANSION OF THE COST FUNCTION:

Hdddg TT
kk JJ αα

2
1

1 ++=+

))(
2

1(1 dgT
kk JJJ −−=−=Δ +

αα

kk gHd −=Iterative minimization: ;



Milija Zupanski,  CIRA/CSU
ZupanskiM@CIRA.colostate.edu

EMPIRICAL PRECONDITIONING – cont.1

REMARKS:
- Taylor expansion of the cost function can be applied to the total cost function,
or to its components
- In this application, the background has well-defined covariance (P f )
- Apply preconditioning approximation only to the observational component 
of the cost function

obsBobsB JJJJJJ Δ+Δ=Δ⇒+=
obsTBTT )()()( dgdgdg −+−=−

NOTE: Two (or more ) components of the cost-function and the inner product

2
1

21
2

2

2

2 −−− +=
∂
∂

+
∂
∂

= f

T

ff

obsB JJ APPP
xx

H

2
1

2
2

2 −−
=

∂
∂

= f

T

f

obs
obs J APP

x
H
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EMPIRICAL PRECONDITIONING – cont.2

INTRODUCE UNKNOWN DIAGONAL MATRIX D:

(1) Assume the Hessian preconditioning in the form

Assumption:

MOST IMPORTANT VARIABILITY OF THE HESSIAN MATRIX IS 
(1) In vertical coordinate direction
(2) For different physical variables

L
T

LJ ))(
2

1( dg−−=Δ
αα

2/12/11)( T
ff

-T PPEE −= D

(2) Matrix D elements change ONLY in vertical, and for physical variables
(3) NOTE: Only observational component of the cost function considered, 
the prior has known Hessian
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EMPIRICAL PRECONDITIONING – cont.3

Descent direction (unknown D):

LL JJ β=Δ

gDd 2/12/1 T
ff PP −−=

Lf
T

LL

T

ff
T

L
T D )()()( 1212

1

gPggPDPgdg −− ≅=−

Gradient norm:

Cost function:

1<β Assumed decrease of the cost function
(most often β ~ 0.5)

Lf
T

LLL

T

fLLf
T

LL

T

ff
T D )()()()( 1212

1
212

1

gPggPDPggPDPg −−− ==

In common applications, Pf defined over horizontal grid only
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