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Univariate Descriptive Statistics

We shall only be considering the continuous probability
distributions for this lecture. The three descriptive
statistics for cts. distributions are defined as

The cts. Mean, which 1s also the first moment of the
distribution, it is also the minimum variance estimator and
IS given by

u=E(X = x)=j3xf (x)dx

x e la,b]




The next statistic is the median. This is the unbiased
estimator. For cts. distributions this is given by

Xmeq 18 the values such that

j f(z)dz =

d

1
2

The third and final descriptive statistic is the mode. This
IS the maximum likelihood estimator and is defined by

Ximoq 18 the value of X such that

i
dx




Univariate normal (Gaussian) distribution

The univariate normal distribution is regularly used to
approximate other distributions through the central limit
theorem, we do not discuss that here, but is has two
definitions. The Standard Normal is defined by

f(z

)= 1 expl—— Z € (—o0,00)
27oc 2

Whilst the biased version is given by

1
f(X)=manp<—5 — - X € (—00,00)

u=E(x), o’= E(Xz)— (E(X)Z)




Multivariate Distribution Theory

Question: How do the three statistic operators transfer to
multivariate theory? NOT VERY WELL!!!

MEAN : Intuition says

E(x)=jj...jxf(x)dx

x, € (a,b), x, e(c,d),---,xy € (e, f)

NOT DEFINED IN MATHEMATICS!!!!

Therefore the expectation of a random vector is the
vector of random expectations




MULTIVARIATE MEDIANS

This iIs the worst of the three statistics. Although it is
unbiased it is also non-unique, even for the multivariate
normal distribution. The multivariate definition is

( x(1) )

x(:z) _

x(N))

x(1)x(2)  x(N)
f(x)dx

Xmed =
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Is all hope lost? No

Our saviour is the mode!!!!

There is a simple multivariate extension of the definition
of the mode from the univariate case to the multivariate.

X4 18 the value of x such that
of (x)
0x




The Multivariate Normal Distribution is given by

()=o) (e ) 2= )}

(27)2 |22 :
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BAYES THEOREM AND GAUSSIAN DATA ASSIMILATION

The basis of 3D VAR comes from Lorenc (1986) where he
uses Bayes theorem

P(AB)= P(BJA)P(A)

with the event A presenting the effect background
knowledge and the event B the effects of the
observations given the uncertainties with the background
states. The right hand side of the equation above
becomes the ANALYSIS DISTRIBUTION whose mean,
mode or median we seek as the ANALYSIS STATE OR
TRUE SOLUTION. For 3D VAR this is written as

P(x= xa‘)’: yt)= P(y= .Vt‘x= xa)P(x= xa)




p(x_xb)ocexp{_;(x_xb)TB—l(x_xb)}
Py = =)o exp| = (y =) B (5= hx))}

Where we have assumed that the background and
observational errors are independent. Therefore
multiplying the two distributions above and taking
the negative logarithm we obtain the standard 3D
VAR cost function

J(x)= —(x x,) B™'(x-x,)

= H) R (- ()




LOGNORMAL DISTRIBUTION: UNIVARIATE AND
MULTIVARIATE THEORY

The lognormal distribution is for a class of positive
definite random variables, i.e.

X220
The pdf is given by

1 - 1(lnx— )
f(x)= -
(X) 2o X = 2 o

u=E(nx), o*= E(iln x)2)—(E(ln;<))2

\

S




PROPERTIES OF THE LOGNORMAL DISTIRBUTION
UNIVARIATE

PROPERTY 1: IF X ~ LN(p,02) THEN In X IS DISTRIBUTED
N(p,0?)

PROPERTY 2: THE MODE OF X IS GXP{,U —0 2}

PROPERTY 3: THE MEDIAN OF X IS [explx}

2
PROPERTY 4: THE MEAN OF X IS exp{ e+ "2}

PROPERTY 5: THE LOGNORMAL DISTRIBUTION CAN
NOT BE UNIQUELY DETERMINED BY ITS MOMENTS!!!

Calorado

_ﬂg fate
CIRA




MULTIVARIATE LOGNORMAL DISTRIBUTION

- (27z)1§2§ (ﬁ(ijj ’

exp{— ;(lnx —p) 27 (Inx- ﬂ)}

X ()= E(x%)=exps gt +—¢,i=12,..

Xmed = eXp{:”}9
X, =exp{ﬂ—2T1}, I'=(01 - 1)

., N




PROPERTIES OF THE LOGNORMAL DISTRIBUTION
MULTIVARIATE

PROPERTY 1: MEDIAN IS NON-UNIQUE

PROPERTY 2: MOMENTS DO NOT DETERMINE THE DISTRIBUTION
UNIQUELY

PROPERTY 3: MEAN IS INDEPENDENT OF COVARIANCE AND IS
UNDOUNDED WITH RESPECT TO THE VARIANCE

PROPERTY 4: MODE IS BOUNDED AND FINITE WITH RESPECT TO
THE VARIANCE.

PROPERTY 5: MODE IS UNIQUE!!!

Calorado

_ﬂg fate
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LOGNORMAL DATA ASSIMILATION
FLETCHER AND ZUPANSKI (2006a)

BY FOLLOWING LORENC (1986) AND COHN (1997) WE CAN DEFINE
A COST FUNCTION FOR LOGNORMAL OBSERVATION ERRORS.

J(x)= : (x xb) B! (x — X, )+%(In y—In h(x))T R™ (ln y— lnh(x))

+ _I\Igl:(ln y; —Inh; (x)) (1)

WHERE THE ERRORS ARE DEFINED BY

g, =x—x,cN(0,B), AND & =——~xLN(O,R) (2)

h(x)

C%lerado

CIRA



MOTIVATION

UNDERLYING ASSUMPTION IN VARIATIONAL, KALMAN
FILTER AND ENSEMBLE DATA ASSIMILATION IS THAT
THE VARIABLES, OBSERVATIONS AND HENCE ERRORS

ARE NORMAL (GAUSSIAN) DISTRIBUTED, LORENC (1986),

KALMAN (1960), EVENSEN (1994).

QUESTION 1: IS THIS TRUE FOR ALL SCALES IN
THE ATMOSPHERE?

QUESTION 2: IS THIS TRUE FOR ALL TYPES OF
OBSERVATIONS?




Question 1

Synoptic scale: Are all the synoptic variables Gaussian? NO

Humidity: To assimilate this variable we have to use the
logarithm of the variable (Polavarapu ez al 2005). This indicates
that this variable is LOGNORMAL!!

Wind component: Combined with the moisture flux then this
variable is showing sign that the wind components may be

LOGNORMAL!! (Raymond 1997)

Comment: These variables are both positive definite!!



Question 1

Meso-scale: Are all meso-scale variables Gaussian? NO

In the paper by Miles ef al. (2000) there is a large summary of
cloud variables which are not Gaussian, specifically
LOGNORMAL and GAMMA. As early as the 1970s rain and
cloud variables had been identified as LOGNORMAL, Mielke et
al. (1977)



Question 2

Are all observations Gaussian? NO

Direct Observations: The variables which we have already
mentioned are not Gaussian and therefore a direct observation of
them is also not.

Retrievals: By having to take the logarithm of the humidity to
apply 1D Variational data assimilation (1D VAR) then the
observation is not Gaussian. It is LOGNORMAL!!

Radiances: By having to bias correct the solution for the VAR

scheme to work implies Gaussian assumption has been violated,
(Derber and Wu, (1998), Harris and Kelly (2001)).



Question 2

Optical Depth: In Stephens ef al. 2002 the pdf of this variable is
presented, clearly showing a LOGNORMAL structure.

Infra-Red Flux Differences: From the same paper.

Cloud base height: In Sengupta ef al. 2004 these observations
shows signs of a lognormal structure.

Liquid water path: Same paper, shows a sharp positive skewness
associated with a LOGNORMAL distribution with large
variance.

Brightness Temperature: Work currently being done with the
GOES-R sounder (Grosso and Sengupta) shows, when scaled to
the main region of observation, then this is LOGNORMAL.



CURRENT TECHNIQUES

CURRENTLY THERE ARE TWO MECHANISM WHICH
ARE USED TO OVERCOME THIS PROBLEM.

TECHNIQUE 1: TRANSFOMATION. IF X ~ LN(n,02) THEN
In X ~N(n,6%). NOTE: THE MEAN AND VARIANCE ARE
UNCHANGED.

TECHNIQUE 2: FORCE THE GAUSSIAN ASSUMPTION
AND BIAS CORRECT.

A THIRD TECHNIQUE WHICH IS EMPLOYED IN OTHER
FIELDS IS TO USE A GAUSSIAN SUM FILTER.

A FOURTH APPROACH IS TO USE A MAXIMUM
ENTROPHY CONDITION.



PROBLEMS ASSOCIATED WITH CURRENT

TECHNIQUES

TRANSFORMATION: P |

IMPACT 1: THE STATISTIC WHICH IS FOUND IS THE
MEDIAN NOT THE MODE NOR THE MEAN.

IMPACT 2: WHEN TRANSFORMING ALL HIGHER
ORDER MOMENT IMFORMATION IS LOST.

IMPACT 3: THE ANALYSIS STATE FOUND WILL OVER
ESTIMATE THE TRUE ‘MOST LIKELY STATE’




PLOT OF LOGNORMAL DISTRIBUTIONS
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PROBLEMS ASSOCIATED WITH CURRENT

TECHNIQUES

FORCED GAUSSIAN: )|

IMPACT 1: WRONG PROBABILITIES ASSIGNED TO THE
OUTLIERS.

IMPACT 2: PROBABILITIES ASSIGNED TO UNPHYSICAL
VALUES.

IMPACT 3: WRONG STATISTICS USED TO
APPROXIMATE THE VARIABLE’S DISTRIBUTION.
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EXAMPLE WITH THE LORENZ'63 MODEL

THE MODEL CONSIST OF THE COUPLED SYSTEM OF THREE NON-
LINEAR PDES

X = —oX+ oy B=3 5=10 AND p=28
y=—XZ+ pX—Y 2
Z=Xy=pr

X, = —5.4458, Y, =—5.4841 AND z, = 22.5606
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LOGNORMAL DATA ASSIMILATION

We start by consider which statistic to use to best represent the
underlying analysis pdf.

The three descriptive statistics are the mode ‘most likely state’,
median ‘unbiased state’ and the mean ‘minimum variance’.

Unlike with the Gaussian distribution and other symmetric
distributions these three statistics are not identical so which one to
use?




HYBRID DISTRIBUTION
FLETCHER AND ZUPANSKI (2006b)

CAN DEFINE A HYBRID NORMAL-LOGNORMAL
MULTIVARIATE PROBABILITY DENSITY FUNCTION OF
THE FORM

foalx)= L 1(1NILJ6XP{—%(£—”)TR1(56—#)} (3)

(22): i =

WHERE X =
q
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HYBRID ASSIMILATION
FLETCHER AND ZUPANSKI 2006b

FROM THE DISTRIBUTION DEFINED IN (3) IT IS POSSIBLE
TO DEFINE A COST FUNCTION FOLLOWING THE
DERIVATION IN LORENC (1986). THIS IS DEFINED WITH A
HYBRID BACKGROUND AS

J(x)——eb _1§b+ & R'E + Zgb, Zgoj (4)

i=p,+1 j=p,+1

WHERE X, — X
é‘,b — ( P, b, P, ) éo ( ypz pz( ) ) (5)

Inx, —Inx, , Iny, —Inh, (x)
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APPLICATION TO SATELLITE DATA
ASSIMILATION

The cost functions which we have presented enable us to avoid
the bias correction which is applied in both direct radiance data
assimilation and in retrievals.

Given this lognormal framework we can quantify the bias
corrections which are currently applied.




TRANSFORMATION (RETRIEVALS)

By transforming to the logarithm of the state variable and the
observations which are a mixture then the associated cost
function is the standard Gaussian cost function,

J(x)_ (x xb) B_l(x xb) :

(-h(E) B (- h(%)
We should have the following cost function

2
1 1 \ A
J(x)= 28b3—1§b+2A R7'8,+ ) &+ ) &,
i=p1+1 j=p2+1




SOLUTIONS

The non-linear solutions to the two cost functions on the previous

slide are derived in Fletcher and Zupanski (2007) and Lorenc

(1986) but are stated here as

X=%,+BH"W, R"'(5 - h(%)) (6)
S _ 0, = O _
X=%,-B|| " |-Wy H'WyR™| §+R| " (7)
A + /7
w, =% g % gy _% g O ag=
Ox oh Oh 0x Ox




WRONG DISTRIBUTION

By assuming the wrong distribution we have to see how much of
an eftect this has. If we assume a Normal background and a set
of lognormal observations then if we apply a Taylor series
expansion of £, then we obtain the following cost function

J<x>=1<x—xb)TB-l<x—xb)
b (=) WIRW,(y—h(x))

Where the solution to (8) is given by

x=x,+BH' W) R"'W,(y-h(x))




4D LOGNORMAL DATA ASSIMILATION

Unlike with the three dimensional version of
variational data assimilation there is not probability
model set out for 4D VAR. Until Fletcher 2007, where
we are able to define 4D VAR as a Bayesian Network.

The Gaussian 4D VAR is defined through a
calculus of variation problem with initial conditions
found through the adjoint. We can do this as well for
the lognormal through the inner product

0,(x,)= ”_‘-%_1: ; <ln yi —Inky(M;(x,)), R (In y, — In by (M; (x, )))>




As with the Gaussian case we know that the first variation
of the functional defined on the previous is equivalent to

a”gl(x0)=i<ln 3y~ (M ). W MR 6,
= <Vg1(x0 ), 5"0>

Through using the properties of inner products we get
that the gradient is

Vg, (xp)= NZ(Wo,iHiMiRi_l)T (In y; —In iy (M (x,)))




What is wrong with the set up on the previous slide?

The solution is a median and not the mode and hence
IS Independent of the variance.

We need to define the functional as

92(x0)=

”_“i;@nyi ~Inh(M;(x,)+ R LR (Iny; —In (M, (xo)))>




We are only able to define these different functionals
because of our previous work with the 3D VAR lognormal
data assimilation method and the properties of the three
distribution estimators. However, if we wanted to extend
this to variables that are not normal or lognormally
distributed we need a probability model.

In Fletcher 2007 we present a model through using

Bayesian networks theory. The main point about this
approach is that it allows us to simplify the expression for
Bayes Theorem extended to multiple events which is given

by




P(xoyxpxz,---,xNo‘J’I’J’Z’J’w'“’yN,,)=
P(xa)P(xl‘xO )P(yl‘xpxo )P(xz‘ylaxl’xO)

...P(yNO xN,yNO_I,xNO,...,yl,xl,xo)

Bayesian networks allow us to remove terms that are
not conditioned on other random variables. From the
diagram on the board for the perfect model we have

that all the model states are only dependent on the
Initial conditions. We also have that the observations
are only dependent on the model state at the time
which allows further simplification to give us




P(x0)x1)x2)---)xNo‘yl’yZ’y-?"”’yNo)=

P<x0>1f[ P,

For themultivarige Gaussiancase we have

P(xo) x exp{— ;(xo — xb,0)T By (xo - xb,o)}
P(J’i ‘xo ) x eXP{— ;(J’i —h (M i (xo )))T R’ (J’i —h (M i (xo )))}




For the multivariate lognormal case we have

P(xo)oc(lﬂ[ o Jx

i=1 Xb,0,j

exp{— ; (ln x,—In Xp 0 )T B, 1 (ln x,—In Xp.0 )}

)« [ 22 00).

kel Yik

exp{— ; (J’i —h, (M i (x0 )))T Ri_l (J’i —h, (M i (xo )))}
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MINIMISATION AND
PRECONDITIONING




Outline of lecture

1) One dimension Newton-Rhapson
2) Unconstrained optimisation
3) Newton’s method for non-linear minimisation
4) Wolfe Condition
5) Quasi-Newton methods
6) Conjugate Gradients
/) Preconditioning

8) Control Variable Transforms




Newton’s method for one-dimensional problems

We wish to solve the problem f(x)=0 but we can not
analytically find the solutions so we approximate the
gradient with a tangent line to the function given a good
guess to the true solution. We obtain the iterative
formula from a Taylor series expansion of the function in
the vicinity of the true root.

f(x)=f(x,)+(x=x,)f (x,)+ (x=%) f'(&)

2
x<E<x . Letx=a= f(a)=0




Newton’s method in multiple dimensions

Like with one dimension case the multi-dimensional
version of Newton’s method come from a Taylor series
which then gives

Xn+l = Xy — F_I(xn )f(xn)
(of, o o)
oX, OX, OXp
of, of, of,

F'(x,)=| ox, ox,  ox
L OX; 0%, OXy




UNCONSTRAINED OPTIMISATION

In this class of problems we are seeking the
minimum/maximum of a continuous function of several

variables. To constrain the solution we have that a
point a Is called a STRICT LOCAL MINIMUM of the

function fif

f(x)> f(a) Vxclosetoaand x#a

Generally an initial guess of a will be well known and

we also assume that the function is twice differentiable
with respect to the variables.




We now reformulate Newton’s method for the function to
use the famous calculus result that at the minima then the
gradient of the function iIs zero, i.e.

of (a)
OX;

Thus we are having to solve the non-linear system of
equations given by

of (x)
OX;
Which in vector notation this problem looks like

Vf(x)=(af of 5fJT==0

ox, X, OX

=0, 1=12,...,N

0, 1=12,...,N




To formulate the minimisation scheme we consider a
Taylor series expansion of the gradient of the function.

0=Vf(a)~Vf(x,)+(x,,,—x,)H(x,)
_Vf(xn)= (xn+1 — X, )H(xn)
(xn+1 _ xn)= _H_l(xn )Vf(xn)
Xnt1 = Xp — H_l(xn )Vf(xn)
Where
0% f(x)
O%0X;
Is the Hessian matrix. The problem for the weather
prediction community is that the size of this matrix is
107 by 107 and therefore we can not analytically find G.

Therefore we need other methods. These are called the
descent methods.

H(x), ; = 1<i,j<N




At the point x,, pick a direction d,, such that
f (x,) will decrease as x moves away from
x 1n the direction, d .

We start by letting
Xyig =X, +5d,

Usually s 1s choosen as the smallest positive
relative minimum of ¢(s) therefore with each

1teration

fx,.,)< f(x,)




How do we choose d, ?

1) The method of steepest descent uses

d,=-Vf(x,)
However this 1s not known for fast convergence.

2) Quasi - Newton methods are such that approximations

are made to the Hessian matrix.

However we need a condition of the terms. These are the

Wolfe conditions




Wolfe Conditions

Let f :R" — R be a smooth objective function, and let d,,
be a given search direction.

A step length s, 1s said to satisfy the Wolfe conditions 1f
i) f(x, +s,d,)< f(x,)+cs,d, Vi(x,)(Armijo Condition)
ii)d) Vi(x, +s,d,)>c,d! Vi(x,)(Curvature Condition)

There are problems with the second condition and so 1s made

stronger by the following adjustment

d Vi(x, +s,d,)<c,d Vi(x,)

<c,

1) combined with the new condition above is refered to as the

strong Wolfe conditions .




Quasi-Newton Methods

stepi):Ax, =—s, H'Vf(x, ) where S, satisfies the

Strong Wolfe Conditions
stepi):x,,; =X, + Ax,

step 1i1) : Calculate the new gradient Vf (xn 1 ) at the new point.

This then enables us to update the Hessian by the approximation
Vo = Vi(x,,,)=-Vi(x,)

However, this 1s a very basic approximation. Therefore this has

been much research into different approximations to the Hessian

matrix. One very wellused approach is the
Broyden - Fletcher - Goldfarb - Shanno (BFGS) method.




Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

The limited memory version of this algorithm is used in
many data assimilation methods. This approach is used
In NCEP’s Meso-scale 4D VAR system, (ETA VAR), it is
also used in the Cooperative Institute for Research in the
Atmosphere (CIRA)/Colorado State University’s 4D VAR
system, RAMDAS — Regional Atmospheric Modeling Data
Assimilation System, Zupanski et al. (2005). This is also
used in the United Kingdom’s Met Office 4D VAR
operational weather prediction systems from synoptic to
cloud resolving data assimilation systems.




The Hessian matrix 1s approximated by the addition of
two more matrices. The algorithm starts from an initial
guess for the true state x, and the Hessian matrix B,,.
Then the algorithm 1s given by the following 4 steps.
step 1) Obtain s, by solving B, s, =-Vf (xn )

step 2) Perform a line search to find the optimal ¢, 1n the
direction found 1n the first step then update the state

Xn41 = X T XSy

Step 3) y, = Vf (x,1)- Vf(x,)
Step4)B,,; =B, + (y”y”) (B"S"S’{BT)

as.)  (saB.s,)




Non-linear Conjugate Gradients methods

These approaches are used instead of Quasi-Newton
methods as they avoid the Hessian approximations but are
not as fast to converge as the Newton methods. These
approaches are seeking solutions to the problem

f(x)=|Ax- b\z
Where the minimum occurs when the gradient is zero i.e.
Vi(x)=2A4"(4x-b)=0

The non-linear CG methods seek a solution to the gradient
problem same as the Newton methods.

So given a cts function to minimise the gradient indicates
the direction of a maximum increment. Therefore we start
In the opposite (steepest descent) direction.




)Ax, =-Vf(x,)

2) compute the scalar £, from the following two choices

BFR Ax, Ax,
AxI—IAxn—l
ﬁPR — Ax:]- (Axn _Axn—l)
n T
Axn—len—l

3)Axn = Axn + /BnAxn—l
4) Optimise o, min f (x,, + &, Ax, )
5)xn+1 =X, + anAxn




Minimization in ensemble DA

Direct solution of Extended Kalman Filter:

x,=x,+ P, K (KP,K" +R)'[y-K(x,)]

P =P -PK'(KP.K"+R)'KP,

Equivalent to solving a quadratic minimization problem (Lorenc 1986):

1 1

J = E(x_xb)T P (x—x,) +§[y— K()]' R [y - K(x)]

K — oK
Subjectto  K(x)=K(x,)+ K(x—x,) “lox

Ensemble DA 1s a minimization process. Due to perfect
Hessian preconditioning, the minimum solution 1s obtained in a
single minimization iteration (for near-quadratic problem).

_ﬁt'\bmu;z&/ Milija Zupanski, CIRA/CSU
SZIRA ZupanskiM@CIRA .colostate.edu



Minimization in variational DA

Variational DA is a minimization algorithm

)= %(x—xbf P (x—x,) +§[y— KT Ry~ K ()]

_ -1
X =X~ P g
P - preconditioning matrix

« Gradient based minimization (CG, quasi-Newton, truncated Newton)
0 Adjoint
L Multiple tangent linear models

O Finite differences
« Difficult preconditioning due to large dimensions of the problem

* Preconditioning impacts not only the minimization convergence (cost),

but also the accuracy of the solution (quality)

_ﬂt‘lb_ e Milija Zupanski, CIRA/CSU
IR A ZupanskiM@CIRA .colostate.edu



Hesslan preconditioning

Hessian and inverse Hessian (linear contribution)

2 T
H_@J

ox’
L, (0% ! 1/2 QT2
H'=| == | =PI+ A)"'P,

A=P, "K' R'KP,'"

Change of variable (preconditioning):

x-x,=E¢=P'"(IT+A)""C

H4 E‘IHE‘T =EEE'E "' =1 >

Caolorada,.

s o

,r

1

=P +K'R'K=P.>(I+A)P,?

H = EE'

Ideal Hessian
preconditioning

Milija Zupanski, CIRA/CSU
ZupanskiM@CIRA.colostate.edu



ldeal Hessian Preconditioning

Physical space (x)
Xo
o Preconditioning space ()
%o
0
J=const.
J=const.
Coloradq,
ala LS il Milija Zupanski, CIRA/CSU

SZIRA ZupanskiM@CIRA .colostate.edu



Hessian Preconditioning

IN HESSIAN PRECONDITIONING

IMPACT OF MATRIX A

1.00E+02 VARIATIONAL
- 1‘ ENSEMBLE
2 1.00E+01 -
o ]
[
= |
o 1.00E+00 -
O ]
1.00E-01 | | | | | | | |
1 6 11 16 21 26 31 36 41 46 51
Number of iterations
-1 1/2 1 T/2
B, =P PENS_Pf (I+A4) P,
Colorada,.
Vi bL “‘w&/ Milija Zupanski, CIRA/CSU

ZupanskiM@CIRA.colostate.edu



Impact of preconditioning in
‘NCEP’s Eta 4DVAR system

COST FUNCTION DECREASE
5.08+4 = {CASE 3)

e
T o - - -
- o o - -

40844 ~

30844

COST FUNCTION

20844 7

1.0844 +—r——r—r—r—T—1"11 T 1
0 4 8 12 16 20 24 28 32 36 40
NUMBER. OF ITERATIONS

Fic. 2. The cost function decrease during the first 40 ilerations of
minimization algorithm, for the assimilation period 0000—1200 UTC
24 November 1994 (case 5). The three experiments shown include
CONTROL, with backeround variance used as a preconditioner (full
line}; NOPREC, with no preconditioning used (short-dashed line):

“and PREC, with the proposed preconditioning method used {long-

dashed line). (é’qpq.us et fﬁ?é) fFon, Wea K:v.)

Incorrect solution without preconditioning !

Coloradq,
o ) b.l&u_"}&" Milija Zupanski, CIRA/CSU
CIRA ZupanskiM@CIRA .colostate.edu
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4 Controls the magnitude of control variable adjustment

d=P"f(g)

Synoptic situation dependent (D=diagonal empirical matrix)

0°J

6 . _ Bl/2(| _I_D)—l BT/2
X




4DVAR RESULTS WITH RAMS MODEL

6-HOUR ASSIMILATION PERIOD: 03/08/2002 1272 -18Z
WRF observations at 15Z and 18Z
Control Variables: INITIAL CONDITIONS + MODEL ERROR
- perturbation Exner function
- potential temperature
- horizontal winds
- total mixing ratio
4DVAR analysis: END of the assimilation interval
CSU RAMS non-hydrostatic NWP model, Level 2 Microphysics
Adjoint with explicit microphysics
15 km horizontal resolution, 31 vertical level
120 X 80 grid points (1800 km X 1200 km)
Calculations performed on Linux PC Cluster (8 CPU)
10 MINIMIZATION ITERATIONS

ONE minimization iteration cost ~ 10 RAMS model integrations (6-h
forecast)

(N O E Milija Zupanski, CIRA/CSU

ZupanskiM@CIRA.colostate.edu



MINIMIZATION ITERATIONS

1.8000E+05

COST FUNCTION

1.6000E+05 ~
1.4000E+05 ~
1.2000E+05 -
1.0000E+05 +

COST FUNCTION

8.0000E+04 -

6.0000E+04
1

2

3

4 5 6 7

Number of lterations

8

9

10

Smooth Convergence

GRADIENT NORM

5.5000E+04

4.5000E+04

3.5000E+04

2.5000E+04

1.5000E+04

5.0000E+03

GRADIENT NORM

3 4 5 6 7 8 9 10

Number of Iterations

Milija Zupanski, CIRA/CSU
ZupanskiM@CIRA.colostate.edu



COST FUNCTION

Cost Function

1 N

300 = (8 =) P (6= x) + - S TK(M () = 3T R, TK (M () - ],

n=1

X — control variable ~ O(10%)

n — time index (n=1, . . ., N)

K — (non-linear) observation operator

M — (non-linear) NWP model

y — observation vector

R — observation error covariance

Xp — first-guess (background) model state
P; — forecast error covariance

Colorada,.

Milija Zupanski, CIRA/CSU
ZupanskiM@CIRA.colostate.edu



HESSIAN
Hessian matrix (linear contribution)

2 N T e
H = Z Jz =P, +> M'K R'K.M =P, *>(I+A)P,’
X n=1

N
A=Y P' "M K R 'K MP,"

n=I

H = EE'

Change of variable (preconditioning):
H,=E 'HE ' =E 'EE'E"" =1

_ﬁt‘lb R Milija Zupanski, CIRA/CSU
IR A ZupanskiM@CIRA .colostate.edu



PRECONDITIONING ISSUES IN APPLICATIONS
TO REALISTIC ATMOSPHERIC AND OCEANIC
DATA ASSIMILATION

(1) Large dimensions of the Hessian

(2) Unavailable matrix representation of the Hessian

(3) Inversion of 108 X 10% matrix not computationally feasible

(4) Computationally expensive calculation of the cost-function and gradient

(5) Preconditioning is necessary: Hessian Condition Number ~ O(101°)

Colo {_‘;Ld,(_l_ -
E Al & . .

.ﬂ‘ . 5.1_ U‘Xé Milija Zupanski, CIRA/CSU
CIRA ZupanskiM@CIRA .colostate.edu



PRECONDITIONING SOLUTIONS IN
APPLICATIONS TO REALISTIC ATMOSPHERIC
AND OCEANIC DATA ASSIMILATION

(1) (Square-root) forecast error covariance matrix: E-T ~ P 172
— = f

- assumption: A=1T

Hessian Condition Number ~ O(102)- O(103)

-

o o K] ° N —T 1/2 -

(2) Empirical preconditioning: E' ~ Pf ( I + D) 2
- assumption: A=D D — empirical diagonal matrix

Hessian Condition Number ~ O(101)

" ,
e\ L z&” Milija Zupanski, CIRA/CSU

IR A ZupanskiM@CIRA .colostate.edu



EMPIRICAL PRECONDITIONING
(Zupanski - Tellus 1993, MWR 1996)

Iterative minimization:  x, = x, +a,d, ; Hdk =—g

USE TAYLOR EXPANSION OF THE COST FUNCTION:

i +agTd+%adTHd

o
AJ=J-J, = a(l—z)(—gTd)

.

Caolors LQ(J

_ﬂ(‘lbL atg, Milija Zupanski, CIRA/CSU
IR ZupanskiM@CIRA.colostate.edu



EMPIRICAL PRECONDITIONING —cont.1

NOTE: Two (or more ) components of the cost-function and the inner product

J=JB 4+ )P = AT=AIB+AT™
(—g'd)=(-g'd)° +(-g'd)™

aZJB+82JObS T 1

H=" ot ~h+P AP

REMARKS:

- Taylor expansion of the cost function can be applied to the total cost function,
or to its components
- In this application, the background has well-defined covariance (P ;)

- Apply preconditioning approximation only to the observational component
of the cost function

) 82 J obs T 1

obs . 2 2
Coloradq, OX

e\ LRl Milija Zupanski, CIRA/CSU
CIRA ZupanskiM@CIRA .colostate.edu




EMPIRICAL PRECONDITIONING — cont.2

Assumption:

MOST IMPORTANT VARIABILITY OF THE HESSIAN MATRIX IS
(1) In vertical coordinate direction

(2) For different physical variables

A =a(1-")(-g"d),

INTRODUCE UNKNOWN DIAGONAL MATRIX D:

(1) Assume the Hessian preconditioning in the form
T-1 1/2 ~n—1 T/2
(EE"Y'=P,"’D'P,

(2) Matrix D elements change ONLY in vertical, and for physical variables

(3) NOTE: Only observational component of the cost function considered,
the prior has known Hessian

tatc & . .
4 ‘\ G Milija Zupanski, CIRA/CSU
TR A ZupanskiM@CIRA .colostate.edu



EMPIRICAL PRECONDITIONING —cont.3

Descent direction (unknown D): d = Pf 12 D_IP f ! /2g

Gradient norm:

1 T

(-g'd) =(g"PD'P?g) =D, (g'P. g),

Cost function:
Assumed decrease of the cost function

A‘]L :ﬂ ‘]L IB<1 (most often [~ 0.5)
In common applications, P;defined over horizontal grid only

1 T 1 T

(gTPfED_IPng)L = gLT (PfE)LDL_l(PfE)LgL = DL_I(gTPf g\

e StAG Milija Zupanski, CIRA/CSU
SZIRA ZupanskiM@CIRA .colostate.edu
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